MA plots
Arguments
- object
A glmmSeq object created by
glmmSeq::glmmSeq()
.- x1var
The name of the first (inner) x parameter
- x2var
The name of the second (outer) x parameter
- x1Values
Timepoints or categories in
x1var
to be used to calculate fold change. IfNULL
the first two levels inx1var
are used.- x2Values
Categories in
x2var
to be compared on x and y axis.- pCutoff
The significance cut-off for colour-coding (default=0.01)
- plotCutoff
Which probes to include by significance cut-off (default=1 for all markers)
- zeroCountCutoff
Which probes to include by minimum counts cut-off (default=50)
- colours
Vector of colours to use for significance groups
- labels
Row names or indices to label on plot
- fontSize
Font size
- labelFontSize
Font size for labels
- useAdjusted
whether to use adjusted p-values (must have q-values in
object
)- graphics
Either "ggplot" or "plotly"
- verbose
Whether to print statistics
Examples
data(PEAC_minimal_load)
disp <- apply(tpm, 1, function(x){
(var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2)
})
resultTable <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
countdata = tpm[1:5, ],
metadata = metadata,
dispersion = disp)
#>
#> n = 123 samples, 82 individuals
#> Time difference of 0.2978292 secs
plots <- maPlot(resultTable,
x1var='Timepoint',
x2var='EULAR_6m',
x2Values=c('Good', 'Non-response'),
graphics="plotly")
plots$combined